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The quasi-classical propagator of a quantum particle in a 
uniform field in a half space 

E A Akhundova, V V Dodonov and V I Man’ko 
P N Lebedev Physical Institute, Leninsky Prospect 53,  117924, Moscow, USSR 

Received 7 August 1984 

Abstract. The quasi-classical formulae for the propagator of the Schrodinger equation and 
for the equilibrium density matrix are obtained for a quantum particle moving in a uniform 
force field in a half space over an ideal reflecting wall. 

1. Introduction 

We consider the motion of a quantum particle in a uniform field with the potential 
U ( x )  = -Fx in the half space x > 0, bou%ded by an impervious ideal reflecting wall. 
Solutions of the Schrodinger equation (H - E ) $  = 0 for this problem are given, for 
example, in (Fliigge 1971). Green functions of this equation are also known (Lukes 
and Somaratna 1969, Moyer 1973, Tachibana er al 1977). The propagator of the 
time-dependent Schrodinger equation in the case of the motion in the unbounded 
region ---a3 < x <CO was obtained by Kennard (1927): 

Here x I  is the initial point, and x2 is the final point (the initial moment of time is 
assumed to be t = O ) .  

In the presence of a rigid wall the propagator is much more complicated, and the 
best result is an integral representation of K derived by Moyer (1973). Formally, the 
propagator can be written in the form of series 

over the complete set of solutions $, of the Schrodinger equation. Nonetheless, 
although the functions $,,(x,  t )  are known, the direct summation in (2) can hardly be 
performed explicitly, because of the complicated dependence of these functions on 
the index n (the energy eigenvalues are determined by the transcendental equation). 
The aim of our paper is to obtain an approximate expression for the propagator in 
the presence of a wall in the frame of the quasi-classical approach. Our interest in 
this problem is explained by several reasons. 

Firstly, it is well known that the exact propagator in the case of the motion in ;he 
full space coincides with the semiclassical propagator, because the Hamiltonian H = 
p 2 / 2 m  - Fx belongs to the class of the so-called quadratic Hamiltonians, if --CO < x < CO 
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(see 8 2 ) .  On the other hand, if F = 0, then both the full space propagator and the 
half space propagator can be calculated exactly via the quasi-classical formulae (see 
P 3). 

Therefore one can ask 1 natural question, whether the quasi-classical approach is 
effective in the case of F # 0. We show that the answer is affirmative in the weak force 
limit and is negative in the strong force case. In other words, one of our goals is to 
investigate the applicability of the quasi-classical method of calculating the propagators 
of non-quadratic systems, considering as an example the simplest non-quadratic 
('nearly quadratic') system. In this context our paper is close to the paper by Crandall 
(1983) who studied the problem of the representation of the propagator in the form 
of a countable sum of quasi-classical terms. He showed that for the free motion in 
the two-dimensional region bounded by the rigid walls cp = 0 and cp = a (in polar 
coordinates) such a representation (a 'collapse' of the propagator) takes place only in 
exceptional cases, when a = T/ b, b being an integer. Our results show that for the 
forced motion in one dimension in the presence of a wall the propagator approximately 
'collapses' in the weak force limit and does not 'collapse' when the force is not small. 

The problem under study is also interesting from several physical points of view. 
For example, it can be considered as the problem of calculating the S state radial 
propagator of a particle moving in the three-dimensional spherically symmetric poten- 
tial V (  r )  = Fir1 which describes in the lowest approximation the interaction between 
two quarks. Besides, in recent years the problems relating to the motion of quantum 
particles in the semiaxis 0 < x < 00 have attracted the attention of specialists in quantum 
field theory because such quantum mechanical systems can serve as the simplest 
analogues of non-renormalisable quantum field theories (Klauder 1979, Kay 198 1).  
Finally, making the substitution t = -iph, /3 being the inverse temperature, which 
transforms the propagator K(x,, xI ,  t )  to the equilibrium density matrix p(xz, x I ,  p) ,  
we obtain in the quasi-classical approximation the generalisation of the classical 
Boltzmann distribution function for a particle in the uniform field taking into account 
the condition of the vanishing of the density matrix at a wall. It is worth noting that 
the question concerning such a generalisation was raised by Wang and Uhlenbeck as 
far back as 1945, but the complete explicit solution of this problem in the closed form 
has not been found until now. 

2. The quasi-classical approximation for a propagator 

Let us suppose that the propagator can be represented in the following 'collapsed' form 

K'"'(x,, x I ,  t )  =exp[ih-'S'"'(x,, x I ,  t )+i ,~(x, .  x i ,  t)+ihcp(x,, xI,  t ) + .  . .I 
where the Planck constant is supposed to be 'small' and the constant coefficients a,  
must be chosen in such a way that the conditions 

K(O,x,, t )=K(xz ,O,  t ) = O  (4) 

would be fulfilled. (These conditions are the consequences of ( 2 ) ,  because all the 
Schrodinger wavefunctions for the problem must vanish at a wall.) We demand each 



Quasi-classical propagator in a half space 469 

term of the expansion (3) separately to satisfy the Schrodinger equation for x2,  x 1  > 0, 
i.e. 

( 5 )  I 2  ihK, = -pi m - ' K X x  - FxK = -$h2m-'K YY - F YK. 

(For convenience we drop the superscript ( n )  replacing the variables x 2 ,  x 1  by x,  y ,  
respectively, also the notation K x =  CS K l a x ,  Kxy = a 2 K / a x  ay, is introduced.) Then for 
the function S ( x ,  y, t )  we obtain the classical Hamilton-Jacobi equations 

S, +tm- 'S:  - Fx = 0, S, - Fy = 0. (6) 

x ,  + m - ' x x S x  -+im-'Sxx = 0, 

The function x ( x ,  y, t )  must satisfy the equations 

x ,  + m-'XySy -$im-'Sy) = 0. 

It is not difficult to verify that the solution of these equations is the following function 

x ( x ,  y ,  t )  = - f i  In Sxy + constant. (7) 

Thus we obtain the well known Van Vleck formula (Van Vleck 1928, Berry and Mount 
1972) 

K(x, y ,  t )  = constant Si. exp(ih-'S(x, y ,  t ) + i h q ( x ,  y ,  t ) + .  . .). (8) 
The next term of the propagator phase expansion q ( x ,  y ,  t )  must satisfy the equations 

m 

( 9 )  

It is essential that ( 7 )  and (9) are valid for quite arbitrary potentials. Consequently, if 
the action S ( x ,  y,  t )  is a quadratic form of coordinates, then formula (8)  is exact. This 
situation takes place for systems with quadratic Hamiltonians in the absence of a wall. 
Indeed, for such systems solutions of the classical equations of motion are linear 
functions of the coordinates of the initial point x I  and the final point x2. Consequently, 
the action 

(where L is Lagrange's function) quadratically depends on x I  and x2.  (The explicit 
formula for the propagator of the Schrodinger equation with the Hamiltonian which 
is a multidimensional quadratic form of the coordinates and momenta operators with 
arbitrary time-dependent coefficients was given by Dodonov et a1 (1975).) 

3. The free motion in a half space 

Formula (8) allows us to obtain the exact result also for the problem of a free particle 
moving in the half space x > 0. In this case there are two classical trajectories connecting 
the initial and final points. The first one is the shortest trajectory (here after t l  = 0) 

x ( 7 ) =  t - ' [ x l ( t - T ) + 7 X 2 ]  

X ( 7 ) = ( X 2 - x 1 ) t - l ,  OS T <  t .  
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If we calculate its action by means of formula ( lo) ,  and take into account the initial 
condition K(x,, x,, 1 )  + S(x2 - x, )  for t + 0, we obtain the propagator of a free particle: 

K 0 ( x 2 , x l , t ~ = ( ~ ) 1 ~ 2 e x P (  im(x2 2ht  - x1)2 ). 
The second solution of classical equations corresponds to the motion with the absolutely 
elastic reflection from a wall at the moment of time t ,  = xI  t / ( x ,  + x2): 

t - ' [Xl (  t - T )  - X27], [ t- ' [X2T - X I (  t - T ) ] ,  

O < T < f t *  

t ,  5 T < t. 
X (  7 )  = 

In the plane ( t ,  x )  this trajectory is obtained by means of connecting the points (0, x l )  
and ( t ,  -x2) with the segment of a line and the following mirror reflection from the 
axis x = 0 of that part of the segment which lies in the region x < 0. Therefore formula 
(8) leads to the function which differs from KO only by the sign before the coordinate 
x2 : 

Taking into account conditions (4), we conclude that the propagator is 
of functions KO and Kh: 

(12) 

the difference 

This result is exact. Note that the boundary condition $(O) = 0 is not the only possibility. 
For example, the exact propagator for the family of boundary conditions $ ( O )  = /3$'(0), 
-CO < /3 <CO were constructed by Clark et a1 (1980). We shall consider, however, the 
boundary condition $ ( O )  = 0 only, bearing in mind the physical meaning of the problem 
under study as the problem of the motion of a particle in the half space bounded by 
the infinite high potential wall, from which a particle is reflected in an absolutely 
elastic manner. The condition $(O) = 0 appears naturally if equation (5) is considered 
as the equation for the radial part of the S-state wavefunction of the particle moving 
under the action of the spherically symmetric potential V ( r )  = F ( r (  (this potential is 
known to have some relation to the problem of two quarks system). 

The substitution t = -$h, where /3 = (kT)-', T absolute temperature, k 
Boltzmann's constant, reduces the propagator to the equilibrium density matrix 

This formula was obtained by another method, for example, in Brown et a1 (1974). 
Besides, formula (13) is the limit case g + 0, w + 0 of a more general exact formula 
for the propagator of a time-dependent 'singular oscillator', i.e. the quantum system 
with the Hamiltonian H = p2/2m + mw2x2/2 + g/x2  which was considered in detail by 
Dodonov et a1 (1974) (see also Klauder 1979). Note that the propagator (13) has the 
form K r ) ( x 2 ,  x I ,  1 )  = KO(x2, x I ,  t )  - K0(x2, -x,, t ) ,  where KO is the reflectionless free 
propagator ( 1 I ) .  A similar formula is valid for the propagator of the harmonic oscillator 
moving in the region x > 0. If we knew the full space propagator k ( x 2 ,  x , ,  t )  corre- 
sponding to the potential V(x) = -FIX/,  --CO < x < CO, then the propagator for the forced 
motion in the presence of the wall at x = 0 would be given by the analogous expression 
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K:“’(x2,  xlr  t )  = k(x2, xl, t )  - k(x2, -xI, t )  (this remark was made by a referee). 
Unfortunately, the explicit form of k is unknown, so that we are to deal with 
approximate methods to obtain the explicit form of K:“’. 

For completeness let us write the explicit formula for the equilibrium Wigner 
function corresponding to the density matrix ( 14): 

J - 2 q  

= expi-”) 2 m  Re erf [ q (%) I /*  + i p  (d)1’2] 2 m  

T P P  sin(?) e x p i - 9 )  

where the error function erf(z) is defined as 

The function ( 1  5)  tends to the classical distribution function exp( - p p 2 / 2 m )  when 
mq2//3h2 >> 1 or Pp’/ m >> 1. In the case of the motion in the full space in the presence 
of a force the solutions of the Schrodinger equation in the Wigner-Weyl representation 
were considered by Balazs (1980) for F = constant and by Dodonov et a1 (1984) for 
an arbitrary function F (  t ) .  

4. The weak force case 

Since in the free motion case formula (8) yields the exact result even in the presence 
of a wall, it seems natural to try to use the quasi-classical approach in the case of 
F Z 0 as well. In the absence of the wall this approach leads to the exact formula ( 1 )  
for the propagator (the quasi-classical solutions of the Schrodinger equation H$ = E+ 
in this case were studied, e.g., by Crowley (1980)). Constants b, b’ and T* are obtained 
from conditions of the absolute elasticity of a blow. As a result, for the parameter T* 

one arrives at  the cubic equation 

(17) 

To understand qualitatively the behaviour of its solutions let us consider the case of 
x I  = x2 = x. Then one solution is obvious: 7 : )  = f t ,  and it is not difficult to find two 
others: 

(18) 

Fm - I  T’, - $Fm I t7: - 7*( x,  + x2 - iF t2  m - ’ ) + xi t = 0. 

T ( 2 . 3 )  * = L * [ t  * ( t 2+  8 m ~ / F ) ” ~ ] .  

If F >  0 (repulsive force), then both solutions are outside the interval (0, t ) ,  so that in 
this case there exists a unique physically acceptable solution. If F < 0 (attractive force, 
i.e. the motion is finite), then the situation is rather complicated, because three solutions 
are possible, i.e. there exist three different classical trajectories with a blow. Really, 
in the case of F < 0 there are trajectories with any number of blows on a wall, i.e. the 
quantity of classical trajectories is countable. Therefore one could expect the quasi- 
classical expansion of the Green function has the form of (3), where every function 
K “  corresponds according to (8) to a certain classical trajectory. The situation is 
simplified if the quantity F is small. If the condition IFIt2/mx<< 1 is satisfied, then for 
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F<O both solutions (18) become complex, so that the trajectory with one blow is 
unique. Under the same conditions trajectories with two and more blows are impossible. 
Indeed, if during the time t exactly N blows on a wall take place then the moment 
T* of the first blow can be found from the equation that is obtained in the same manner 
as equation (17): 

N ( N +  1 ) F 2 m - 2 7 4 * - ( 2 N +  1 ) F 2 m - 2 t ~ 3 , - [ ( 2 N 2 -  1)2Fm-'x l  + 2 F m - ' x 2 -  F2m-2 t2 ] r$  

+ 2 ~ m - ' ( 2 ~ -  I ) X , ~ T * + ~ N ( N -  I)x:=o. (19) 

For N = 1 this equation is reduced to (17). If x i  = x2 = x then equation (19) can be 
solved exactly. Four solutions are as follows 

As we see, if F < 0 then all solutions become complex for F +  0. If F > 0 then for any 
F either r* or the time of final blow are outside the interval (0, t ) .  Thus, one can 
suppose that for F+O only two terms remain in the series ( 3 ) .  The first of them is 
given by formula ( l ) ,  the second must tend to expression ( 1  2 )  in the limit of F = 0. 
Evidently, the time of the blow r* for F+O will be slightly different from the time of 
a blow in a free case, i.e. the solutions of equation (17) can be found in the form of a 
series with respect to the parameter E The first terms of the expansions of T* and 
S'I) are as follows 

x I t  x , x 2 ( x l  - x 2 ) t 3  x I x 2 [ ( x I  - x ~ ) ~ - ~ x , x ~ ] ~ *  
r* = - + F +  F 2 +  . . .  ( 2 1 )  

x , + x 2  ~ m ( x , + x , ) ~  ( 2 m ) * ( x I  +x2)' 
, , , _ m ( x , + ~ ~ ) ~ + F t ( x ~ + x ~ )  F 2 t 3  x:x:  1 

s -  2t  2 ( X I + X 2 )  + m ( ( x , + * , ) ' - i d  

The following terms of action's expansion in powers of F can be found with the 
aid of equations ( 6 ) .  From formula ( 2 2 )  one can make the conclusion that the function 
S'" has the following functional form: 

Taking the sum of equations (6) and introducing new variables we obtain the equation 
for the function $(p ,  z )  

Further, we present the function $ in the form 
oc 

$( / -bz)=  p k $ k ( Z ) .  
k =  I 

For the function t,hl(z) one can find the expression 

$l (Z)  = tc 1 + Z )  
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which conforms with formula (22). Other functions are calculated from the recurrent 
formula 

$k(Z) = [4( k -I- 1 )]-I 

In particular 

k- l  

[4Z( Z - 1) $i(Z)$L-j(Z) - ( j  -2)( k - j  -2) '+!'j(Z) $k-j(z)l* (25) 
j =  I 

Ic12(z)=i%z-1)2-A, $3(z) = h Z ( Z  - $ 4 ( ~ ) = & ~ ( ~ - l ) 2 ( 3 ~ - l ) .  (26) 

It follows from formulae (24) and (25) that for k 3 3 the functions $ L k ( ~ )  have the form 

$k(Z) = z(z-  1)'pk(Z) (27) 

where the functions Pk(Z) are polynomials of the degree k-3.  One can obtain the 
following formula for the cross derivative: 

+[(2k- 1 ) z -  1]$L(z)+2z(z- l)$:(z))]. 

Due to formulae (24)-(27) this derivative can be written in the form 

where ik (  z) are polynomials of degree k - 1.  At a wall (for x ,  = 0 or x2 = 0) one has 
z = 1, therefore both the action S") and the modulus of its cross derivative are the 
same as for the action S, Therefore, we find the following expression for the propagator 

24m 
cc 

+ 

- [ 1 + (z - 1 ) (  i p  +$p2(5z - 1 )  +&p3(28z2 - 172 + 1) + c p 4 i k ( z )  

2 

k = 4  

- 

x:x: + 

As to the quantum correction cp(x2, x I ,  t )  (see formula (3)), it follows from equation 
(9) that it can be presented in the form of 

(The expansion must begin with k = 1, because formula (30) coincides with formula 
(13) for F = 0 = p.)  The first two terms of the expansion are as follows 

(It is essential that constants appearing in integrating linear non-uniform equations 
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(9) can always be chosen in such a way that the correction q(p ,  z )  would be equal to 
zero at a wall, i.e. for z =  1 . )  Hence formula (30) is true under the conditions 

For the equilibrium density matrix one obtains the expression (we write F = -f, f > 0 
because in the case discussed only the attraction field should be considered): 

- 

f2P’h’ * 2  xfxf  
( x , + x 2 ) 4  

Let us pay attention to the fact that for x I  = x2 = x one obtains the closed expression 
for the function S“’ 

S”’(x, x, t )  =2mx2/ t+fFtx-  F2t3/96m (33) 

(since we know the exact solution of (17) T* = i t ) .  In  this case it is also possible to 
find a simple expression for the cross derivative. Introducing the variables x = $(xI + x2) 
and 7) = xI  - x2 we shall look for S‘” in the form of 

S“’(X, 7, t )  = gdx, t )  + c &k(X, t )  
k = l  

where the function g,(x, t)  is given by formula (33). In order to find the functions 
gk(x, 1 )  we write the difference of equations (6) in the new variables: 

m-‘(aS/ax) d S / a q  - Fv = 0. (34) 

From this equation we obtain 

g, = o ,  g, = mFt/ ( Ft2 + 8 mx). 

Thus 

I )  1 a”s“’ a 2 s ‘ l ’  m(8mx - F t 2 )  -1 3x1 ax2 X,’XZ = ( ~ ~ - ~ ) l v = , , =  t(8mx+Ft2) ’ 

Consequently, we obtain the following generalisation of the classical Boltzmann 
formula for the diagonal elements of the equilibrium density matrix 
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This formula is true under the following conditions 

fp2h2/mx(< 1, fp3h4/m2x3<< 1, (36) 

i.e. for relatively weak fields, high temperatures and far from the wall. In practice, 
formula (35) can be interesting only provided it is true at least for the value of the 
coordinate of the order of de Broglie’s wavelength x* = (ph2/m)”’ when the second 
exponential in (35) is not too small. Introducing x = x *  to the inequality (36) we 
obtain the following restriction on the strength of field 

qb = f 2 h 2 / m ( k T ) 3 < <  1. (37) 

In a gravitational field condition (37) is always fulfilled: for an electron in the Earth’s 
gravitational field we have 4 - 3 x lo-’’ for T = 1 K. (Note, that the term fpx is also 
very small for all reasonable values of p and x in this case, i.e. the density matrix 
coincides practically with (14)). The strength of the electrical field under the same 
conditions should be sufficiently smaller than 300 V/m. Formulae (35) and (32) can 
be simplified if the condition (37) is fulfilled as follows 

5. The strong field case 

One can also obtain the approximate solutions of (19) and (6) in  the form of series 
of x1 and x2. Confining ourselves to the terms of order y ;  with respect to the 
dimensionless variables yk = mxk/ Ft2 ( k  = 1,2)  (this means that we suppose that l y /  << 1, 
i.e. the field is strong) one can obtain four sets of solutions to (19): 

TL”= -2( N - l) ty,[l  - 2 N (  N- l ) y , - 2 ( N -  I)y2+ 8 N 2 ( N -  1)2y: 

+ 4 ( N -  1)’(3N+ l)yly2+4(N- l ) (N2-  l)y:+..  .] 

-4N2(3N+4)yly2-4N2(N-2)y:+.  . .] (41 1 

- 4 N 2 ( N +  l ) y i + .  . .] (42) 

+4(N+ 1)(N2- l )y ly2+4N(N+ 1)’y:+. . .]. 

(40) 
TL”,= -2Nty1[ l -2N(N+ l ) y 1 + 2 N y 2 + 8 N 2 ( N +  1 ) ’ ~ :  

r;”= ( t /  N)[1 + 2N( N - I)yl +2Ny, -4N2( N - 1 ) ’ ~ :  -4N2(  N - 2 ) ~ l y 2  

T ( N )  D = [ f / ( N + 1 ) ] [ 1 $ - 2 N ( N + l ) y ] - 2 ( N +  1)y2-4N2(N+i)’y: 

(43 1 
These formulae determine the moment of the first blow. The moment of the nth 

blow is then equal to 

(44) 7, = nr* - 2( n - 1 ) mx, / Fr*, n = 1 , 2  , . . . ,  N. 
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The action in the case of N blows equals 

Thus one gets four sets of action functions 

1 Y l + Y 2  2N-1 
24(N-l)’-2(N-l) 2 

y : + y , y 2 + .  . .), N 3  1 (47) 
F 2 t 3  

2 2 

(48) 
1 y , - y 2  2N-1 2N+1 

s&N”)-  -- +-+- Yl-- y:+y1y2+ . . . ) ,  N z 1  
F:3( 24N2 2N 2 2 

S L N ) = m ( - 2 4 ( N + l ) 2 + 2 ( N + 1 )  F 2 t 3  1 Y l + Y 2  ~ 2N+1 2 (Y :+y: ) -Y iY2+. . . ) .  N z 0 .  

(49) 

For all these functions ld2S/dx, dx21= m/ t. Moreover, S g )  coincides with the reflection- 
less action s,. The condition (4) is satisfied provided one writes 

Formally, we have obtained the quasi-classical propagator in the strong field case. 
However, expression (50) is quite unsatisfactory from the physical point of view. 
Indeed, all the terms in this expression have the leading factors exp( -iF2t3/24mN2) 
(since ly,l<< 1 ) .  Consequently, if one writes the equilibrium density matrix, then the 
leading terms in the exponentials will be proportional to the expression f 2 p 3 f i 2 /  m, 
which can be written u p  to a number coefficient as (Eo/ kT)3, Eo being the energy of 
the ground state (Flugge 1971). But we know that the temperature can enter the 
equilibrium density matrix only in the form of exp(-E,/kT), if T+O. 

This means that the propagator does not ‘collapse’ in Crandall’s sense in the strong 
field case. In other words, in the strong field case the quasi-classical approach fails. 
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